INTRODUCTORY ECONOMETRICS

Lesson 1

Dr Javier Fernández

etpfemaj@ehu.es

Dpt. of Econometrics & Statistics

UPV—EHU

1 Introduction

1.1 Definitions. Elements of Econometrics

C J Fernández (SA3-UPV/SHU), February 21, 2009

Introductory Econometrics - p. 2/192

roductory Economotrics - p. 2/102

Introduction: Definitions

ECONOMETRICS

- (plz, do not confuse with economic + tricks !!!)
- etymological:οίκος [οίκοs], 'ho

 $oi\kappa o \zeta$ [oikos], 'household', and $vo\mu o \zeta$ [nómos], 'rules'

hence economics \rightsquigarrow household management,

 $+~\mu arepsilon au
ho lpha$ [metró], 'measure'.

Economy + Measurement

additive:

Social science which applies Economic theory, Mathematics and Statistical inference to the analysis of economic phenomena (Goldberger(1964)).

- utilitarian: The art of the econometrician = define appropriate model + find optimal statistical procedure
 - \rightsquigarrow econometrician \neq statistician;

 \cdots + sound training in economics (Malinvaud(1963)).

Introduction: Definitions

- plain: application of statistical methods to economic data (Maddala(1977)).
- concise: empirical determination of economic laws (Theil(1971)).
- AFG(2004): Econometrics deals with
 - formulation (or specification),
 - quantification (or estimation),
 - validation (or testing),
 of relationships among economic variables.

G J Fernández (EA3-UPV/EHU), February 21, 2009

Introductor Forcemetrics of 4/402

J Fernández (EA3-UP/(EHU), February 21, 200

ntroductory Econometrics - p. 5/192

Introduction: 3 Elements:

Introductory Economistrics

■ ECONOMIC THEORY:

in charge of

- ◆ (general:) analysis of the economy
- ◆ (specific:) relationships among economic variables
- DATA:

to quantify is NOT one of the objectives of Economic Theory

STATISTICS:

provides basic structure of data processing methods for:

- (estimation:) quantify relationships among variables in an appropriate way.
- ◆ (testing:)
 validate results in agreement with certain established standards.

Introductory Econometrics - p. 6/192

troductory Econometrics - p. 7/192

Element 1: Economic Th: basic model

- ◆ Case: company manager or sales director,
 - ◆ Interest: to know relationship between their sales and their price.
- **basic economic logic:** sales as a function of price → basic economic model:

$$V_{sales} = f(p)$$

$$Price(-)$$

```
f(ullet) is a generic function (Ec Th : f(ullet) = inverse fn \longrightarrow sales \uparrow if price \downarrow.)
```


Element 1: Economic Th: additional vars

1.2 Concept and example of model: From the economic model to the econometric model.

additional economic logic:

sales depend on

- ◆ conditions of rival firms (e.g. competition price)
- market conditions (e.g. economic cycle)
- complete Model:

$$V_{\mathrm{sales}} = f(\begin{array}{c} p \end{array}, \begin{array}{c} pc \\ \text{price competition price} \end{array}, \begin{array}{c} c \\ \text{cycle} \end{array}$$

■ NOTE:

proposed economic model ≡ summary of ideas, but nothing new for manager; they need specific model for their company → how their sales respond to their price.

Element 2: Data:

specific Information:

manager has information about:

- • their sales and their prices (quantitative data)
 - prices of the competition (quantitative data)
 - cyclical moment (qualitative data)
- e.g.:

dates	Sales	price	comp.p.	cycle
jan 80	1725	12.37	11.23	high
feb 80	1314	11.25	10.75	high
apr 95	1234	13.57	14.5	low
:				:
-	,	1	. \ \	-

and all this month after month until December of 2004.

Element 2: Data: specific model

specific model for available data:

$$V_t = f(p_t, pc_t, c_t), t = 1980.1, ..., 2004.12$$

where subindex *t* indicates period or moment of relationship.

- up to now:
 - economic model: summary of general ideas about relationship
 - data: or specific information on the different variables
 - ◆ How to put together both elements?...????

E2: (generic) model + (specific) data?:

A: assumptions about $f(\bullet)$; e.g.: linear relationship.

The model will then be:

$$V_t = \beta_0 + \beta_1 p_t + \beta_2 p c_t + \beta_3 c_t, \qquad t = 1980.1, \dots, 2004.12$$

 \blacksquare β 's = parameters or coefficients :

e.g. β_1 answers the question:

how much sales change if price changes in one monetary unit?

→ price policies, production decisions etc. for the company.

■ B: indicators:

allocate quantitative values to qualitative variables (like Cycle): e.g. substitute with indicator such as Industrial Production Index.

E2: Model +data?: random disturbances

■ After this the model expresses a quantitative relationship among variables:

1725 =
$$\beta_0 + 12.37\beta_1 + 11.23\beta_2 + 101.7\beta_3$$
 (1980.Jan)
1314 = $\beta_0 + 11.25\beta_1 + 10.75\beta_2 + 97.3\beta_3$ (1980.Feb)
 \vdots = \vdots

- NOTE: ... different relationship for each month??? ...
- **C:** disturbance term:
- back to the generic *economic* model:
- ⇒ stable behaviour among variables
- ⇒ "average" behaviour reflected in data
- \Rightarrow add term u_t to cover up for small discrepancies...

E2: Model+data?: interpretation

■ The econometric model will finally be:

 $V_t = eta_0 + eta_1 p_t + eta_2 p c_t + eta_3 c_t + egin{pmatrix} oldsymbol{\mathcal{U}_t} \\ ext{(important \& systematic "influences"} \end{pmatrix}$ (random disturbance term

- Interpretation of u_t :
 - ⇒ effects that affect sales slightly in every period

but not explicitly picked up by the model.

- ⇒ small data discrepancies.
- \Rightarrow non systematic effects \equiv more erratic.
- ⇒ random variable with certain probability law

(e.g.: Normal dn).

C J Fernández (EA3-UPV/EHU), February 21, 2000

Introductory Econometrics - p. 14/192

introductory Education D. 102 102

1.3 The Econometric Model. The Disturbance or Error term.

Element 3: Statistics:

- Model contains a random variable
 - → statistical procedures that guarantee good results:
- ⇒ to estimate numeric value of the coefficients,
- ⇒ to test the validity of the relationship,
- the estimated model
 - won't be a generic model
 - but a specific model for the company
- it will offer the manager

specific information to make decisions.

Basic Characteristics: data notation

More general econometric model with K variables:

■ for time series data:

$$Y_{t} = \beta_{0} + \beta_{1}X_{1t} + \cdots + \beta_{K}X_{Kt} + u_{t}, \quad t = 1, 2, \dots, T.$$

or, for cross-section data:

$$Y_{i} = \beta_{0} + \beta_{1}X_{1i} + \dots + \beta_{K}X_{Ki} + u_{i}, \quad i = 1, 2, \dots, N.$$

or, for panel data:

$$Y_{it} = \beta_0 + \beta_1 X_{1it} + \dots + \beta_K X_{Kit} + u_{it},$$

$$\begin{cases} i = 1, 2, \dots, N; \\ t = 1, 2, \dots, T. \end{cases}$$

Basic Characteristics: vars notation

- *Y*: the variable we want to explain: dependent v, explained v, endogenous v or regressand.
- $\blacksquare X_1, X_2 \dots X_K$: variables that explain the variable Y: explanatory v, independent v, exogenous v or regressors.
- \blacksquare β_k , (k=1...K): unknown constants that determine relationship among variables: parameters or intercept & coefficients.
 - β_k is the estimated coefficient.
- u: variable that picks up other non-important effects present in data: random disturbance or error term.

Basic Differences with economic model

Presence of a random disturbance that

picks up erratic behaviour:

$$Y_t = \underbrace{\beta_0 + \beta_1 X_{1t} + \dots + \beta_K X_{Kt}}_{\text{systematic part}} + \underbrace{u_t}_{\text{non-systematic or random part}} t = 1, 2 \dots T.$$

has zero mean:

$$E(Y_t) = E(\beta_0 + \beta_1 X_{1t} + \dots + \beta_K X_{Kt}) + \underbrace{E(u_t)}_{=0} \quad t = 1, 2 \dots T.$$

- hence systematic part \equiv average behaviour of Y.
- \blacksquare other assumptions on u (basic hypothesis, etc.)
 - → probabilistic behaviour in different cases
 - → statistical tools → Econometric Methods.

Classification of econometric models

Different approaches:

- looking at type of data:
 - ◆ Time series model.
 - ◆ Cross-section model.
- looking at period of observation:
 - ◆ static M.: Vars measured in same moment.
 - ◆ dynamic M.: Vars referred to different periods:

e.g.
$$Y_t = \beta_0 + \beta_1 X_{1t} + \beta_2 X_{1,t-1} + \beta_3 X_{2,t-1} + u_t$$

- looking at number of relationships:
 - Single-equation models:

a single relationship or equation.

◆ Simultaneous or Multiple-equation models:

more than one equation.

etc.

1.4 Stages in the elaboration of the model. Uses of the model.

Stages in the elaboration of the model

0. **Selection.** Outline the theory of interest:

■ select the variable to explain: *Y*.

 \blacksquare select the overall relationship: Y = f(X).

1. Specification. Outline econometric model coherent with theory:

■ choose the explanatory variables: $X_1 ... X_K$.

■ choose the functional form: e.g. $f(\cdot) \equiv \text{lineal}$.

■ choose the probabilistic behaviour (distribution) of the random disturbance: u, e.g. $u_t \sim \operatorname{iid} \mathcal{N}(0, \sigma^2)$.

$$Y = \beta_0 + \beta_1 X_1 + \dots + \beta_K X_K + u.$$

Introductory Econometrics - p. 22/19:

Using the econometric model

The model that has gone thru all the previous stages can then be used for:

economic analysis:

interpretation of coefficients,

hypothesis testing,

• etc.

prediction:

• time series forecasting:

to forecast (predict) future values of Y.

• in general:

to respond to questions of the type,

what would happen if ...?

Stages in the elaboration of the model

- 2. Estimation. Quantify unknown parameters according to the available information:
 - find data for variables: $Y_t, X_{1t}, \dots, X_{Kt}$ for $t = 1, \dots, T$.
 - choose the appropriate statistical method, e.g. OLS:

$$Y_t = \widehat{\beta}_0 + \widehat{\beta}_1 X_{1t} + \dots + \widehat{\beta}_K X_{Kt} + \widehat{u}_t, \quad t = 1, 2 \dots T.$$

- 3. Validation. Evaluate whether the model represents the initial problem correctly:
 - statistical inference on hypotheses.
 - model not adequate ~ back to specification phase.

C J Fernández (SA3-UP/(SHU), February 21, 2009

ntroductory Econometrics - p. 23/192

